Photoinduced oligomerization of aqueous pyruvic acid.

نویسندگان

  • M I Guzman
  • A J Colussi
  • M R Hoffmann
چکیده

The 320 nm-band photodecarboxylation of aqueous pyruvic acid (PA), a representative of the alpha-oxocarboxylic acids widely found in the atmospheric aerosol, yields 2,3-dimethyltartaric (A) and 2-(3-oxobutan-2-yloxy)-2-hydroxypropanoic (B) acids, rather than 3-hydroxy-2-oxobutanone as previously reported. A and B are identified by liquid chromatography with UV and ESI-MS detection, complemented by collisionally induced dissociation and 2H and 13C isotope labeling experiments. The multifunctional ether B gives rise to characteristic delta approximately 80 ppm 13C NMR resonances. Product quantum yields are proportional to [PA](a + [PA])(-1) in the range [PA] = 5-100 mM. CO2(g) release rates are halved, while A and B are suppressed by the addition of >1.5 mM TEMPO. A and B are only partially quenched in air-saturated solutions. These observations are shown to be consistent with an oligomerization process initiated by a bimolecular reaction between 3PA and PA producing ketyl, CH3C(OH)C(O)OH, and acetyl, CH3C(O)*, radicals, rather than by the unimolecular decomposition of 3PA into 1-hydroxyethylidene, 3HO(CH3)C: (+CO2), or [CH(3)C(O)* + *C(O)OH] pairs. A arises from the dimerization of ketyl radicals, while B ensues the facile decarboxylation of the C8beta-ketoacid formed by association of acetyl radicals with the ketyl radical adduct of PA. Since the radical precursors to A and B are scavenged by O2 with a low probability per encounter (k(sc) approximately 1 x 10(6) M(-1) s(-1)), PA is able to accrete into multifunctional polar species in aerated aqueous media under solar illumination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid.

The variable composition of secondary organic aerosols (SOA) contributes to the large uncertainty for predicting radiative forcing. A better understanding of the reaction mechanisms leading to aerosol formation such as for the photochemical reaction of aqueous pyruvic acid (PA) at λ ≥ 305 nm can contribute to constrain these uncertainties. Herein, the photochemistry of aqueous PA (5-300 mM) con...

متن کامل

Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds

[1] Aqueous-phase oxidation (in clouds and aerosols) is a potentially important source of organic aerosol and could explain the atmospheric presence of oxalic acid. Methylglyoxal, a water-soluble product of isoprene, oxidizes further in the aqueous phase to pyruvic acid. Discrepancies in the literature regarding the aqueous-phase oxidation of pyruvic acid create large uncertainties in the inclo...

متن کامل

Photoinduced degradation of 2,4-dichlorophenol in water: influence of various Fe(III) carboxylates.

Fe(III)-carboxylate complexes were investigated with respect to tri-carboxylic (citric), di-carboxylic (tartaric) and mono-carboxylic (pyruvic) acids. In agreement with the chemical structure, results demonstrated that Fe(iii) was complexed by citric acid with a ratio of 1 : 1 (Fe/ligand), tartaric acid (d or l) with a ratio of 1 : 2 and by pyruvic acid with a ratio of 1 : 3. The iron concentra...

متن کامل

Change of the tautomeric preference for radical cation of pyruvic acid. DFT studies in the gas phase

Keto-enol tautomerism was investigated for ionized pyruvic acid using the DFT(B3LYP) method and the larger basis sets [6-31++G(d,p), 6-311++G(3df, 3pd) and aug-cc-pVDZ]. Change of the tautomeric preference was observed when going from the neutral to ionized tautomeric mixture. Ionization favors the enolization process (ketoenol) of pyruvic acid, whereas the ketonization (ketoenol) is preferred ...

متن کامل

Evidence for oligomer formation in clouds: reactions of isoprene oxidation products.

Electrospray ionization mass spectrometry (ESI-MS) was used to investigate product formation in laboratory experiments designed to study secondary organic aerosol (SOA) formation in clouds. It has been proposed that water soluble aldehydes derived from aromatics and alkenes, including isoprene, oxidize further in cloud droplets forming organic acids and, upon droplet evaporation, SOA. Pyruvic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 10  شماره 

صفحات  -

تاریخ انتشار 2006